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Abstract—Nonconservatively loaded columns, which have stochastically distributed material prop-
erty vitlues and stochastic loadings in space are considered. Young's modulus and mass density are
treated to constitute random fields. The support stitfness coetlicient and tip follower load are
considered to be random variables. The fluctuations of external and distributed loadings are
considered to constitute a random ficld. The variational formulation is adopted to get the ditTerential
equation and boundary conditions. The non self-adjoint operators are used at the boundary of the
regularity domain. The statistics of vibration frequencies itnd modes are obtained using the standard
perturbation method. by treating the luctuations to be stochastic perturbations. Linear dependence
of vibration and stability parameters over property value fuctuations and loading fluctuations are
assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first
evaluated for the averaged problem and the corresponding cigenvalue statistics are sought. Then,
the frequency equation is employed to transform the cigenvitlue statistics to eritical load statisties.
Specialization of the general procedure to Beek, Leipholz and Plluger columas is carried out. For
Plluger column, nonhnear transformations are avoided by direetly expressing the critical load
statistics in terms of input variable statistics.

1. INTRODUCTION

With the advancement of space mechanies and rocketry, the study of the stability behaviour
of rockets, missiles, cte., has gained considerable importance. The inertia forees are always
directed in the opposite direction to the motion whereas the drag forees arising from fluid
frictional effect are always tangential to the deformed axis of the column, if the missile or
rocket is tdealized as a column. Such nonconservative loadings give rise to the definition of
the dynamic stability criterion. Since the system lucks adjucent conligurations of static
equilibrium, in the presence of follower forces, the method of small oscillations is to be
adopted for determining its stability behaviour. A detailed theory for such nonconservative
systems can be obtained from Bolotin (1963). Zicgler (1968), Herrmann (1967) and Leipholz
(1980).

This class of structures is more important and sensitive to any deviations from an
idealized mathematical model as in Laudicro ¢t al. (1991), Pedersen and Seyranian (1983),
Pedersen (1977), Bolotin and Zhinzher (1969), Smith and Herrmann (1972), Sundararajan
(1974), Sugiyama ¢ «l. (1974), Kounadis (1980, 1981, 1983) and Plaut and Infante
(1970a.b). Recently, the probabilistic description of strength parameters, material proper-
tics, geometric boundary conditions and external loadings is gaining much momentum. A
witness to the recognition ol this fuct is the recent spurt in the rescarch activity (Bolotin,
1967, 1989 ; Tsubaki and Bazant, 1982; Soong and Cozzarclli, 1967 ; Zhu, 1988 ; Schueller
and Shinozuka, 1987 Shinozuka, 1987 Vanmarcke, 1983 ; Augusti ¢ al., 1981 ; Hoshiya
and Shah, 1971 ; Augusti ¢f «l., 1984 ; Shinozuka and Lenoc, 1976).

The usage of modern construction materials like RCC in civil engineering and fibre-
reinforced composites in acrospace engineering has not only underlined the inclusion of
uncertain parameters in the analysis procedures. but also demands the optimization of
design variables in a stochastic environment. In this regard the works by Jozwiak (1985,
1986) can be cited. Moreover. the condition monitoring techniques are also being developed
wherein the eigensolutions play a key role (Pye and Adams, 1982; Gudmundson, 1984).

SAS 29:23-X 2973



974 S. ANANTHA Ramu er al

To serve the purpose of monitoring, the deviations of such eigensolutions when the system
parameters are uncertain, need to be studied in detail. In the works by Boyce (1968),
Soong and Cozzarelli {1976). Vom Scheidt and Purkert (1983) and Ibrahim (1987) random
eigenvalue problems are considered in detail. [n the area of stochastic stability analysis,
research activity is directed along the following two lines : (1) deterministic systems subjected
to random loading in time which is a classical random vibration problem (Wedig, 1977;
Kozin, 1988 Herrmann, 1971 ; Pi et al., 1971 ; Seide, 1986; Ariaratnam and Xie, 1988 ;
Ariratnam, 1967, 1971; Plaut and Infante, 1970a,b), and (2) stochastically parametered
and conservatively loaded systems (Collins and Thomson, 1969; Shinozuka and Astill,
1972). Nonconservative, non-self-adjoint stochastic systems need to be studied. as can be
seen from the literature survey.

In this paper, a general analysis is presented for stochastic systems subjected to stoch-
astic circulatory forces. to obtain the statistics of critical loads for such systems.
Specialization of this analysis is affected for Beck, Leipholz and Pfluger columns.

The stochastic fluctuations of Young's modulus and mass per unit length are treated
as one-dimensional, univariate, homogeneous stochastic fields, spatially distributed. The
tangential loading over the column is viewed as a one-dimensional, univariate, homogeneous
stochastic field in space as the individual value deviations are stochastic.

2. SYSTEM DESCRIPTION

The mass distribution is represented by
m{(x) = m{l +b(x)]. H

where x is the spatial variable, s is the mean value of the stochastic process representing
the mass distribution and A(x) is a spatially distributed, one-dimensional, univariate, homo-
geneous, zero mean stochastic ficld representing the deviations or fluctuations of mass
distributions about its mean value, Similarly, the Young's modulus and the distributed
nonconservative loadings are deseribed as,

E(x) = E[1 +a()], )
g(x) = gl +d(0)], 3)

where £ and § are the mean values of the random processes £ and g respectively. a(x) and
d(x) are two independent, one-dimensional, univariate, zero mean, stochastic fields which
are also homogencous, representing the fluctuations of £ and g distribution about their
respective mean values. The autocorrelation functions of a(x), b(x) and d(x) are given by

R..(2) = Ca(x)-a(x+2)), 4
R (2) = (b(x) *b(x+2)), (3)
R (2} = {d(x)d(x+2)>, (6)

where R, (2), Rw(2) and R,(z) are autocorrelation functions of random processes a(x), b(x)
and d(x), respectively. The power spectral density functions S,.(f), Si{f) and Su{f) are
given through Wicner-Khintchine relations. In the above, z is the separation distance and
/is the frequency.

The tip tangential nonconservative axial loading is given as

P =Pl +cl. ™

where ¢ is a random variable with zero mean and variance a2, and P is the mean value of
P. The elastic support parameter is given as
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Fig. 1. Column configurations with follower loadings and Winkler foundation.

K = K[1+k]. (8)

where & is a zero mean random variable with af as its variance. K is the mean value of K.
The extended variational principle (Leipholz, 1980) reads as

d (ot ). ) ] .
r Clde \ow ow + du— Qw]+ F(x, )dw e do

—J (T* (W) D*(Ow) +*(dw) - D*(w)) dR—J. Plw]ow ()'ledl =0, 9
Ry :

R
where
X is the spatial coordinate,
t is time,
T, is a time interval,
r is the volume of the system,
R is the surface consisting of R, a supported part and Rg, a free part,
T is the kinetic cnergy density so that T = [,.r dv, where
T is the total K.E. of the system,
u is the potential cnergy density so that U = {.u dv, where
U is the total P.E. of the system,
ow is a virtual displacement,

Q[w] represents thosc volume forces that do not have a potential,
P[w]  represents those surface forces that are without a potential,
F(x.1) isa prescribed driving force,

T* is the “vector” of those internal forces that become apparent in Ry, if that part of
the surface is released from its constraints,

D* is the “vector™ of corresponding displacements,

W, = dw/d1, deflection velocity, w is the deflection.

For the columns shown in Fig. 1, we have,
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= lm(l+bh(x)". where W= 3 = e (10)

HEM+aonI(w”) = g[l+d(ONL ~x)(w') = P[L+c](w') = K[V +An? ), (1)

1

where the prime denotes differentiation with respect to x, w is the lateral displacement, w,,
the deflection velocity.
We also have,

Plw] = - Pl +o)(w). (12)
So. we get,
d{ ¢ _ -
7 [0‘—“] = m{l+b{x)) W (t3)
and
) " . _
‘),:‘" = P+ +G(1+dON(L=x) W] +[E(+a(x) T w "= R +khw. (14)
¢

Following Leipholz (1980). introducing the following functions

Gy = —gU+dNL =)’ =P+’ = [E(L+alx)-w" ], {15
cu ..
hy= =Ll +alx)) 1w, (16)
ond

the differential cquations and boundary conditions can be derived as in the deterministic
cuse.
The differential cquation is given as:

(L b))+ [E( +alx) ] +G(1 +d(D[(L=x) w]
+ P+ e +G( +d(x)w’ +Kw = F(x.r). (I7)

The boundary conditions can also be separately generated. For example, we can get the
following sct of boundary conditions for the column shown in Fig. 1(a):

w(o,1) = w'{o,1) =0, (18)
Ell+a(L) " (L) = [EQ +a(x) " (6, 0] e = 0. (19)

In addition, we are having the initial conditions about w and w at the time origin.

The differential operators of egn (17) are non-self-adjoint, i.c.unsymmetric. But there
is a domuin in the plot of vibration frequency vs nonconservative load parameter, wherein
the differential operators behave as their self-adjoint counterparts. This domain is classically
known as the “Regularity domain™ (Leipholz, 1986). Physically, any point corresponding
to the region beyond this " Regularity domain™ represents the load parameter, which causes
the amplitude of vibration to increase exponentially. The states of the system with bounded
amplitudes correspond to the load parameter space given by the region within the regularity
domain. So. the operators can be considered at the boundary of this domain for stability
investigation. In order to get the regularity domain. the variable separable solution is
employed, and the eigenvalue equation Flw;}.q) = 0 (where w; is the vibration frequency
of the column corresponding to the load parameter g) is derived for the loading parameter
g. Since stochastic quantitics are involved in the differential equations, the stability limits
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Fig. 2. General stability domain for stochastic columns subjected to stochastic follower loads.
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which define the boundaries of the **Regularity domain™ will have a stochastic fluctuation
(see Fig. 2). The fluctuations of any boundary point on the **Regularity domain™ are treated
as random perturbations of the mean value of that point. This enables one to use the well-
developed procedures for analysing the deterministic nonconservatively loaded columns to

solve the averaged problem,

Once the “Regularity domain™ is obtained, the response behaviour can be obtained
through suitable methods like modal analysis (Leipholz, 1986). In the light of the above,
to ascertain the stability of the system. the consideration is about the fundamental problem,

—m (L + b))+ D(w,) =0,

“| (".n) = 0*

where

D) = [E(+aC)) i) +[GO +d (WL —=)wi+ P(L+Owl+ K(1 +k)w,

and u,(*) is the boundary operator.
Letting

w(x, 0) = Y X,(x)-T,0),

n=at
on substituting into eqn (17), we will get,

EQ +a()T, (DX () + (1 +d (L —x) X (x)T.(1)

+PU+)X()T () + R+ k)X, ()T () + (L + b)) X () T, (1) = 0.

Since

T = —w!-T,()

using the normalized coordinate ¢ = x/L and cancelling 7,,(¢) throughout, we get,

- I . i
X [EQ+a(ELHIX, (D] + P‘[f\’li(s‘)'.ti(l +d(EL) - (L-GSL)]+ L:

x P(1+) X2+ RO +K) X)) —m (1 +b(EL)w; X (E) = 0.

This is a linear differential equation with variable coefficients.

(20)

(20

(23)

(24)



2978 S. ANANTHA RaMU ¢t df.

As

| —
mil e

de d
d ='E. (T.;=

e

i.e. Jacobianis “L".
Multiplying eqn (25) by L* and dividing by £1. we get

U+ 2a(1X ()} +9.G (1= (1 +7d())X7(S)
+ PG (1+) X (&) +nK(1+Kk) X, (3) = A,(1+ B X,(S).  (26)

where
L L . wi-mL? ) )
n =& G_ET Ay =—"FE and g, =gL

and «, f and y are perturbation parameters.

To characterize the stochastic quantities in terms of perturbations as we discussed
above, we introduce o, ff and y to be associated with a(£), () and (&) into the differential
equation. At the end of the analysis «, f§f and y can be sct equal to unity.

Employing the expansions
Aw = Ayl + A yi v bed HhkAg+ 7N

and
(28)

Xa(Q) = Xo(Q) + 2 X (&) + BX2(S) +7X3(O) + X u(Q) +AX () +- -

the differential eqn (26) becomes
U +aa(@]X(E) +aX () + XU +7X5(E) + X +AX5(E)]}”
+g . G(1 = +yd(EN{X5(E) +aX (&) + BXUE) +7X5(E) + X (E)
+AXD) + PG+ {XI(E) +aX () + X5 +7X7(D)
+ XU +HRXGEO+ 1+ RU+0n{X, ) +2X, () +X:(E)
+7 X3 (E) + X (&) +hX(E)+- ) = [A, +ak + iy +yiv+ el +hkig+- )
X { X, () + 2 X ((§) + X2 (E) +7X3(E) + Xy Q) +hX(E) +- -} {1 +8b(E)}. (29)

From this, the generating solution can be obtained as satisfying the following equation :
(30)

X (@) +GLGX(E) =G .GEXT () + PGXI(E) + KX, (&) = 4,X,(&).
We can also obtain the following system of equations containing the perturbations of /4,
and X,(§):

X7 +(§.G~go " GOX(E) +a(d) X" (§) + PCX(§) +24' (DX ()
+a" (X)) + KnX () = L X () +4,X,(D), (31

X7 (O +(§iG =g GOX(E) + PGXUE) + RnX2(§) = 2 X2() + 2 X, (§)D(E) + 72X, (&),
(32)
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X7 () +(§.G = G.GOXWE) +A(EOVXUEN + PCX3(E) + RnXo(E) = A X3 () + 4, X, (D).
(33)

X7 (D +(gG=d.GHXUO + PGX UL + X3 + RnX3(9) = A XD +4X(D. (34)
X$ O+ (@6 -G.GHXNE) +PCXD + Rn(Xs(D +Xo(Q)) = AX{(D+4:X,(D). (39

Particular cases
(a) Beck column. The boundary conditions are given below :
w0.0) =0, X,(0)=0,
wi({0.0=0 X, (0)=0.
Em"(LLy=0, X,(1)=0,
[Em" (1, =0, X, (1)=0.

Considering eqn (30), by setting K = g = 0, the solution of X, (&) is as follows:

X, (&Y =Cysinr é+Cycos r &+ C,ysinhr &+ C, cosh ryé, (36)
where
ry= {;}+ (g) +o’, (a7
ry =\/-—g+\/@) +w?, (38)
p = PG. (39)

Further, C,, C,y, C;and C, arc constants.
The characteristic equation is now given by the condition,

rysinr +rysinhry,  ricosr,+ricoshr,

—ricosr,—ricoshry, rlsinr,—r}sinhr,|

ie.
ri+ri+rry(ri—ri)sinr, sinhry+2riricosr, coshr, = 0. (40)
The critical load of the Beck column with averaged properties £, /, P and s is given by

_ 2.0017%ES
p, ~ 2OUREL @1

[ LZ

Using this value of P, and other parameters, r, and r, are evaluated. The constants C,
C,, Cy and C, are evaluated from these values of r, and r,. The expression for X,(£) now
corresponds to the boundary point of the “Regularity domain™ and it represents the
deflected shape of the column at the instability point.

(b) Leipholz cofumn. The boundary conditions are the same as those for the Beck
column, Considering eqn (30), by setting K= P =0, X,({) can be solved using these
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boundary conditions. The expansion functions for the deterministic case (Leipholz. 1980)
are employed for the averaged problem. So.

K

X = Y a,M (D). (42)

/ B} 3 }.(!7 E/) e 7° ok 6'3 v/(‘/ EI)' (

M=+ (=0 = (=0 4 (=00 1615 ,,f;—w(u\)“
(43)

o 4'/((/,51) AR
.\I] =(|—\_)+ g) — 3 (I-—\) +9'(|_\_) 4 (44)
— RIET
x‘[::“"&_—)'—sl‘(([ EI) (I——g) + /(l—— ) Q"U/ (‘/ E[)

n

(=8 = CAGENT =3+, (49)

213! 3! 20315

,.w‘=(|—§)‘—")’. MG ENN ="+ - d(1=38)+ oty

7!

(213151 4+ 310!

st AT GIEDU =0 (46)

MG EDT(=8)" -

a,. «y and ¢, are constants ot the mode shape.
From these, the Qutter or divergent loads can be obtained tor cach case, accordingly.

() Pfluger columm. The ditterential equation is the same as that ol the Leipholzcolumn
but the boundary conditions need to be moditied as follows:
w0, 1) =0, X,(0) =0,
W’ (0, =0, X(0)=
w(l.y =0, X.,(1)=0.
w' (L) =0, Xil)=0

The general behaviour of this column considering the averaged parameters ts shown in Fig,
3. The critical load is the averaged divergent load, e, Euler buckling case. even though g

ne
q:_.i
a.
c,2 . .
ic" is the divergence load
-
9
9
Stadility
domain

Fig. 3. Typical frequency equation plot for averaged PRuger column.
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is nonconservative. For this column the static method can be employed. So. the statistics
of vibration frequencies are not needed to get the critical load statistics.

3. EIGENVALUE STATISTICS

Considering the equation for .Y, (). multiplying by X, (¢) and then integrating between
0 and [, we get.

| I
J- a"(i)‘X;'(i)'.\'o(é)di+2j a’(i)'XS'(é)'Xo(ﬁ)di+J Q)

o

§ 1

a(d) - X7 () - X9 dg +j 9o G X&) X (D dS

[\

'-\’o(é)di+'[

o

(o}

| ! |
—J g'LGi‘\'T(é)Xu(i)di+J' PG-\’I'(i)'Xo(C)dC'*I-J Rn-X\(&)
1 1
'4\’.,(§)d§~J‘ ':~|"’G(§)d§—‘[ Ao X1 (8) Xo(9)dS = 0. (47)

Substituting eqn (30) into eqn (47), we get

a($) - X7 ()X (8) dg

1
J d’(S) - Xo(S) X dS + 2 J @'(§) - XT(S) - X8 dS +J

o

Ay o=

. v
j X&) deg
(48)

Adopting a similar procedure, we get

1
—/'-..j b X3 dg
Gam o (49)

1
!iz.Gj XX dS
/;.] = D "I’*""——'"*“ B s sl e (50)
J X3 dg

1
I’GJ X9 X.(5)rdé
Ay = R sn
Jz".f(é)dé
and

is = K. (52)

These values are substituted in the 4, expansion, so that
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1

{
{j a"(f)'XZ(i)'Xo(S)‘dS*—ZJ a(9) X7

[+]

—
f X3(9)ds

hw = A+

i }'0

a(C)'XS"(s’)'Xo(C')'dS}— ,
f X5(&ds

'Xo(i)d§+f

o

!
PG{J X358 X($) dc’}

i
f b(&) - X&) dE +c- ,
° f X&) dé

j (§:G—4:GE) d( X5(8) X, (5) dS

+ +Rnk+---. (53)

i
J X3 d¢

As a(&), b(&) and d(&) are zero mean stochastic processes, and further k& and ¢ are zero
mean random variables, their derivative processes are also zero mean processes. Hence the
expected value of 4, is

() =4, (54)
The covariance between any two normalized frequencics is given by
C, = I+ U+ HI+IVHV+VE+ VI VIT+IX 4+ X + X1+ higher order terms]. (55)
The detailed expressions for the different terms in the above can be found in the Appendix.
Thus, the complete covartance matrix between As can be constructed. From here
onwards the frequency corresponding to the critical load is written as 4, for clarity.
Since

Var (4,) = E(4) = [E(L))* = E(A7) = 4], (56)

we get from eqn (53),

l 1 1 + 0 . , ,
I*—“’_‘—;'[ J f_ S.u(f) e’ [(X(E))

{f Xﬁ(é)dé}

[XEN S AE, A&+ T f f f Se)
{ f X&(é)-d:} ‘

Var(4,) =

(9.6)*
i 2
{f Xi(c’)dc'}

1 1 +o
xj J f_ Saa(f) ™32 X (G X ()X (G X (E2)

e X (60) Ko (€ Xo(€2) X () dfdEy déy +
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1
T )
{j Xﬁ(i)di}

i 2
x U XI:(:)XO(C)di} +Rnoi+--. (5N

x(1=¢)(1-¢&,)dfdé, dé, +

This is the variance of the vibration frequency of the column at the point of instability.
Numerical integration is preferable as closed form integration is tedious.

It is obvious that the physical properties E, m and loading g(x) are independent and
so the cross correlations are zero. Corresponding terms are automatically removed from
the above expressions. So, we only have

Ry(zi—22) = (a'(z4)a"(z2)), (58)
Ruc(zy—22) = La(z)) - d'(22)). (39
Ruv(z1—22) = Ca(zy)a"(z2)), (60)

involved in covariance relationships.

4. BOUNDS FOR EIGENVALUE STATISTICS

Having established the covariances and variances in terms of spectral density functions
{or autocorrelation functions), we can proceed to establish the bounds for covariances
and variances. Here, the bounds for variances are established, for clarity. In the sequel,
Paal &1 —=E2) pra(E L = &5) and p (& — &) denote the correlation functions and s,,(f), 55 (/f)
and s, (f) denote the normalized power spectral density functions of the respective stoch-
astic fields.

Fora given set of values of 6 and af, it is very clear that the variance of any eigenvalue
is a function of power spectral densities S,,., S, and S, for a system with known variances
of material properties and loadings. If each of the stochastic fields describing the material
property fluctuations and loadings has a perfect correlation regardless of the physical
separation, i.¢. p (5, =&1) = puwl1—&2) = pul& = &,) = 1, the normalized spectral den-
sities £, (). 5,(f) and s,(f) are direct delta functions and furthermore, 5,,(/), sw(/)
and s,,{ f) concentrate around the point f = 0. In this case, the variance of any cigenvalue
becomes,

t pd t 2
Var (3,) = {a.f[ f {X:(:)l’dé] +z§a§U X&{:)d:]
H xsmd:}

| 2 i 2
+(§:.G)20§[J (l—é)XZ(f)Xu(C)dc'] +(FG)203[J XZ(E)XO(C)dé] }+K003+"'-
(61

The other extreme is to consider a perfectly random case, which is known to be a white
noise. In that case, the correlation function is a spike function at the zero separation distance
and the normalized spectral density function is a straight line parallel to the wave frequency
axis. If all three fields are simultaneously considered to be the white noise fields, we have,
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|
Suu(f) = Spo T z_f_
l
Shh(f) = Spo = 27 as _/u - X (62)
. 1
Sulf) =su = ﬁ

Three different cutoff frequencies can also be used. i.e. f,,. f.. and f,; for s,,. sy and sy,
respectively (the limiting case that f, — 0 was discussed above). The corresponding cor-
relation functions are, in the limit,

Pu(&) = 0(0). pull) = 0(0). pu($) = d(0). (63)

Using these, the variances of eigenvalues can be obtained easily. But, these correlation
functions result in infinite total power in the wave frequency domain of the random fields.
So, a realistic model will account for the spectral density function as a finite power white
noise or band-limited white noise. In such cases, we have

. . sin f,(S,—¢3)
puu(gl - S.Z) = 2‘\.(“) 7""';/_.?77"‘ ;77' )
(w —9:)

I’hh(il - S:Z) = Lp0 T v )

and
sin £ (&, —=¢&))

64
(& —E) (64)

Pl —E1) = sy,

Now, using eqn (57), we will get

l { [ S - :‘ s
Vi!l'()-n) = *————-—-——«—-——"'";{20‘3,\'”0 J- j‘ bﬂ\v{y—('i]':"il)—[ng(: { )] -
0 *) (‘; | CI)

1 1
{f Xf(é)ds‘}

x [Xo(ED) dE dgy + 2450750, J

[¢]

‘ J 'sin £,(& =30

- X:(&
@ -gy Y

=& —¢,
ey Umin-g)

1
x X3(&2)d¢, d&, +2(!7/,G)20';3»\1/‘.J‘ f

x Xo(€DX(EDXI(EIX(E:dE, dS, +(PCG)a!

1 2
X [j XII(E)‘\’u(é)ds‘] }+K"IGE+"'. (65)

However, exponential correlation with onc paramcter can also be assumed wherein the
first-order autoregressive modcls could be accommodated to evaluate the bounds, Now, it
is very clear that considering the limiting case of this sinc correlation and also considering
¢’ and o7 to be equal to zcro, the lower bound can be shown to be equal to zero.

5. STATISTICS OF CRITICAL LOADS

For the stability analysis of deterministic nonconservatively loaded columns, it has
been proved that one may proceed with the so-called fundamental problem (Leiphoiz,
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1980). The same is assumed to hold good for the averaged columns. Since the fluctuations of
any point on the boundary of the **Regularity domain™ are viewed as random perturbations
consituting an ensemble. stability conclusions are drawn about the averaged problem
response.

The averaged eigenvalue equation is used to determine the critical load ¢. of the
averaged column. The corresponding eigenvalue is analysed for the statistical description
as above. Since, the load parameter is a function of vibration frequency related through
the eigenvalue which is now rewritten for the stochastic system as

4. = Fi(4). (66)
for ¢ = ¢*, we have

F(i.q*) =0. (67)

This equation will yield the eigenvalue 4,(¢*). Using the value, vibration modes are obtained
and thus the averaged eigensolutions are now available.

If we know the individual and joint statistics of eigenvalues, it is possible to derive the
statistical description of load parameters through explicit analytical relationships that are
of closed form. So, if the monotonic unique relationship between the eigenvalues and critical
load parameter exists, we can have the inverse relationship,

k= Fy(q), (68)
where

R =T'(). (69)

In such cases, closed form analytical relationships can be written for the probability density
function of ¢, using the standird transformation procedures of random variables as

d

Jolg) = filw) - dq. Fi(q.). (70)

Similarly, the distribution function of ¢, can be shown to be

F(]c(‘ll"ll’ql“‘"‘In) = F[{Fl(;'l) S ‘Il}v""{Fl(}‘n) S qn}]
=F,(Fy(q,). F2(q2)..... Fa(q)). (71)

For the Leipholz column, we have the following frequency equation:
M, (0)- M (0)— M, (0)- M, (0) =0, (72)
and for the Beck column, we have
PP+ 2w +pwsin r sinh ry+2w* cos ry coshr, =0 (73)

which arc obtained using the clamped-free boundary conditions. These can be solved
numerically for a specific set of structural parameters. Simulation procedures can be
employed to obtain critical load statistics, based on these equations.

We know, from the dynamic stability theory, that Beck and Leipholz columns are
flutter systems (i.c. vibration increases in amplitude). The Pfluger column however is a
pseudo-conservative system which is a conservative system of the second kind. For such
columns, the kinetic method of stability investigation need not be used for the averaged
problem. Euler’s method can be used. Consider the Pfluger column. The critical loads can
be directly obtained as follows. By sctting the fundamental vibration frequency to zero, we
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are representing the static Euler buckling case. A parameter g, is introduced into egn (17)
so that,

o MoL®
gL - E—I . (74)
Ho = o+ 240+ Buz+ypus+- (fork =0), (75
and
Xa(&) = X, (&) +2X () +BX2(E) +7X,:(D). (76)

Adopting a similar procedure that is used for obtaining the statistics of vibration
frequencies. we get the following expression for the buckling parameter y,. For instance. if
only £ is random we get

l

1
{J‘ [X0()1*d¢

In this manner, the statistical information about the critical loads can very casily be
obtained. It may be noted that the nonlincar transformation involved in the Beck and
Leipholz columns does not appear in the Pfluger case, even though it is subjected to
nonconservative loadings.

1 1 +
Var (4,) = }j JJ Sual )T E{XIEN NG} df dE, S

(a7

6. CONCLUSIONS

The variational formulation is adopted to get the differential equation and boundary
conditions of a stochastically parametered and stochastically excited column. The per-
turbation method is used where the perturbing terms are taken to be the resultants of
stochastic quantitics of the system. The non self-adjoint operators are used within the
regularity domain where the behaviour is entirely self-adjoint. First, the critical load is
calculated using the averaged problem and the corresponding eigenvalue statistics are
sought. Then, using the frequency equation, the transformation is performed to get the
load parameter statistics, through the explicit analytical relationship, which can be solved
numerically. For the Pfluger column, a direct method of evaluating the statistics of critical
load which does not involve a nonlinear transformation is illustrated. Evaluation of bounds
for free-vibration frequency variability enables the evaluation of bounds for critical load
variability, which is an important practical information. This is so because the evaluation
of exact correlation structures of the input random ficlds are seldom possible.

The foregoing has also cnabled the development of the complete covariance structure
of the frequencies and critical loads of stochastic columns which is lacking even for the
simple conservative cases treated in the literature so far (Hoshiya and Shah, 1971 ; Shino-
zuka and Astill, 1972).
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APPENDIX

J S S AN BT KGO XED DNy df dF dls
J S (e NI )NUEDNEDNE DS dE, dEs

= J S‘,.,(f)e‘”‘:"‘::' XEDXTEIN NGNS dS dds

A$ = SDXTEDNLEDN DX (ENdS dSs

R.. RS A M) A IR W TR WS TN ISS

VIl = 2 R TN EDXASDNE D dS dL

V= J‘ J‘ R:: _ﬁ)‘u (El)‘ (s )‘ (\l)‘ (5 )ds,ldg

Vil :J. J R, A5 ~¢)VIE DN (DG NG ) dG, dss

| {
= ZJ- J L CR SO P S (00 2 S (Y R (SR A M TS LN I

X, X1 = Similar terms tor the effects of h(x), d(x) and ¢.

I 1
i= l/” J XEDNHENAE, tlé:}.



